cga/Algorithms/PolygonTriangulation.hs

182 lines
5.4 KiB
Haskell
Raw Normal View History

{-# OPTIONS_HADDOCK ignore-exports #-}
module Algorithms.PolygonTriangulation where
import Algebra.Polygon
import Algebra.Vector
import qualified Control.Arrow as A
import Data.Maybe
import Safe
data VCategory = VStart
| VEnd
| VRegular
| VSplit
| VMerge
2015-01-07 18:16:12 +00:00
deriving (Show, Eq)
-- |Classify all vertices on a polygon into five categories (see VCategory).
classifyList :: [PT] -> [(PT, VCategory)]
classifyList p@(x:y:_:_) =
-- need to handle the first and last element separately
[classify (last p) x y] ++ go p ++ [classify (last . init $ p) (last p) x]
where
go :: [PT] -> [(PT, VCategory)]
go (x':y':z':xs) = classify x' y' z' : go (y':z':xs)
go _ = []
classifyList _ = []
-- |Classify a vertex on a polygon given it's next and previous vertex
-- into five categories (see VCategory).
classify :: PT -- ^ prev vertex
-> PT -- ^ classify this one
-> PT -- ^ next vertex
-> (PT, VCategory)
classify prev v next
| isVStart prev v next = (v, VStart)
| isVSplit prev v next = (v, VSplit)
| isVEnd prev v next = (v, VEnd)
| isVMerge prev v next = (v, VMerge)
| otherwise = (v, VRegular)
2015-01-07 18:15:51 +00:00
-- |Whether the vertex, given it's next and previous vertex,
-- is a start vertex.
isVStart :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVStart prev v next =
2015-01-09 02:24:44 +00:00
ptCmpY next v == LT && ptCmpY prev v == LT && cw next v prev
2015-01-07 18:15:51 +00:00
-- |Whether the vertex, given it's next and previous vertex,
-- is a split vertex.
isVSplit :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVSplit prev v next =
2015-01-09 02:24:44 +00:00
ptCmpY prev v == LT && ptCmpY next v == LT && cw prev v next
2015-01-07 18:15:51 +00:00
-- |Whether the vertex, given it's next and previous vertex,
-- is an end vertex.
isVEnd :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVEnd prev v next =
2015-01-09 02:24:44 +00:00
ptCmpY prev v == GT && ptCmpY next v == GT && cw next v prev
2015-01-07 18:15:51 +00:00
-- |Whether the vertex, given it's next and previous vertex,
-- is a merge vertex.
isVMerge :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVMerge prev v next =
2015-01-09 02:24:44 +00:00
ptCmpY next v == GT && ptCmpY prev v == GT && cw prev v next
2015-01-07 18:15:51 +00:00
-- |Whether the vertex, given it's next and previous vertex,
-- is a regular vertex.
isVRegular :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVRegular prev v next =
(not . isVStart prev v $ next)
&& (not . isVSplit prev v $ next)
&& (not . isVEnd prev v $ next)
&& (not . isVMerge prev v $ next)
2015-01-07 18:16:12 +00:00
2015-01-09 02:58:24 +00:00
-- |A polygon P is y-monotone, if it has no split and merge vertices.
isYmonotone :: [PT] -> Bool
2015-01-07 18:16:12 +00:00
isYmonotone poly =
not
. any (\x -> x == VSplit || x == VMerge)
. fmap snd
$ classifyList poly
2015-01-12 21:44:23 +00:00
-- |Partition P into y-monotone pieces.
monotonePartitioning :: [PT] -> [[PT]]
2015-01-09 02:58:05 +00:00
monotonePartitioning pts
| isYmonotone pts = [pts]
| otherwise = go (monotoneDiagonals pts) pts
where
go :: [Segment] -> [PT] -> [[PT]]
2015-01-12 21:40:39 +00:00
go (x:xs) pts'@(_:_)
| isYmonotone a && isYmonotone b = [a, b]
| isYmonotone b = b : go xs a
| otherwise = a : go xs b
where
[a, b] = splitPoly pts' x
2015-01-13 00:05:02 +00:00
go _ _ = []
2015-01-09 02:58:24 +00:00
-- |Try to eliminate the merge and split vertices by computing the
2015-01-12 21:44:04 +00:00
-- diagonals we have to use for splitting the polygon.
monotoneDiagonals :: [PT] -> [Segment]
monotoneDiagonals pts = catMaybes . go $ classifyList pts
where
go :: [(PT, VCategory)] -> [Maybe Segment]
go (x:xs) = case snd x of
2015-01-12 21:27:43 +00:00
VMerge -> getSeg (belowS . fst $ x) (fst x) : go xs
VSplit -> getSeg (aboveS . fst $ x) (fst x) : go xs
_ -> [] ++ go xs
go [] = []
getSeg :: [PT] -- all points above/below the current point
-> PT -- current point
-> Maybe Segment
2015-01-12 21:27:43 +00:00
getSeg [] _ = Nothing
getSeg (z:zs) pt
2015-01-09 02:20:13 +00:00
| isInsidePoly pts (z, pt) = Just (z, pt)
2015-01-12 21:27:43 +00:00
| otherwise = getSeg zs pt
aboveS :: PT -> [PT]
2015-01-12 21:27:43 +00:00
aboveS pt = tail . dropWhile (/= pt) $ sortedYX pts
belowS :: PT -> [PT]
2015-01-12 21:27:43 +00:00
belowS pt = reverse . takeWhile (/= pt) $ sortedYX pts
2015-01-09 03:08:19 +00:00
-- |Triangulate a y-monotone polygon.
triangulate :: [PT] -> [[PT]]
2015-01-09 02:58:05 +00:00
triangulate pts =
go pts . A.first reverse . splitAt 3 . reverse . sortedYX $ pts
where
go :: [PT] -- current polygon
-> ([PT], [PT]) -- (stack of visited vertices, rest)
2015-01-12 21:37:10 +00:00
-- sorted by Y-coordinate
-> [[PT]]
go xs (p@[_, _], r:rs) = go xs (r:p, rs)
go xs (p@(u:vi:vi1:ys), rs)
-- case 1 and 3
| adjacent u (last p) xs =
2015-01-13 00:05:02 +00:00
(triangleOnly . splitPoly xs $ (u, (last . init) p))
++ go (fromMaybe []
. headMay
. nonTriangleOnly
. splitPoly xs
$ (u, (last . init) p))
(init p, rs)
-- case 2
| adjacent u vi xs && (not . null) rs =
if getAngle (vp2 vi u) (vp2 vi vi1) < pi / 2
2015-01-13 00:05:02 +00:00
then (triangleOnly . splitPoly xs $ (u, vi1))
++ go (fromMaybe []
. headMay
. nonTriangleOnly
. splitPoly xs
$ (u, vi1))
(u:vi1:ys, rs)
else go xs (head rs:p, tail rs)
2015-01-13 00:05:02 +00:00
| otherwise = []
go _ _ = []