cga/Algorithms/ConvexHull.hs

67 lines
1.8 KiB
Haskell
Raw Normal View History

{-# OPTIONS_HADDOCK ignore-exports #-}
module Algorithms.ConvexHull where
import Data.List
import Diagrams.TwoD.Types
import Diagrams.TwoD.Vector
import Util
import LinearAlgebra.Vector
-- |Find the point with the lowest Y coordinate.
-- If the lowest y-coordinate exists in more than one point in the set,
-- the point with the lowest x-coordinate out of the candidates is
-- chosen.
lowestYC :: [PT] -> PT
lowestYC [] = error "lowestYC: empty list"
lowestYC [a] = a
lowestYC (a:b:vs)
| ay > by = lowestYC (b:vs)
| ay == by &&
ax > bx = lowestYC (b:vs)
| otherwise = lowestYC (a:vs)
where
(ax, ay) = unp2 a
(bx, by) = unp2 b
-- |Sort the points in increasing order of their degree between
-- P0 and the x-axis.
grahamSort :: [PT] -- ^ the points to sort
-> [PT] -- ^ sorted points
grahamSort xs = p0 : sortBy (\a b
-> noEqual a b .
compare
(getAngle (pt2Vec a - pt2Vec p0) xv) $
(getAngle (pt2Vec b - pt2Vec p0) xv))
(removeItem p0 xs)
where
xv = unitX
p0 = lowestYC xs
-- Have to account for corner cases when points are in
-- a straight line or have the same y coordinates. Eq is
-- not an option anyhow.
noEqual :: PT -> PT -> Ordering -> Ordering
noEqual a b EQ
| ay == by &&
ax < bx = LT
| otherwise = GT
where
(ax, ay) = unp2 a
(bx, by) = unp2 b
noEqual _ _ LT = LT
noEqual _ _ GT = GT
-- |Get all points on a convex hull by using the graham scan
-- algorithm.
grahamGetCH :: [PT] -> [PT]
grahamGetCH vs = f . grahamSort $ vs
where
f [] = []
f (x:y:z:xs)
| ccw x y z = x : f (y:z:xs)
| otherwise = f (x:z:xs)
f xs = xs